Updates on DNO and Integration: Eswatini and Nigeria (and Lesotho)

Dianna Edgil USAID/OHA/SCH September 13, 2019

Process of Diagnostic Optimization

- Ensure complete national stakeholder buy-in and political will
- Clearly define the country **goal** for optimization (e.g. cost; TAT; access; testing priorities; integration; surveillance)
- Data collection laboratories, instruments, testing volumes, sample collection sites, programmatic patient demands by site, existing referral linkages, HR
 - Use GIS visualization tool to present outputs, refine assumptions, and establish data gaps
- Establish a **stakeholder workshop** to present initial models and further refine models
- Inclusion of integrated approach in National Lab Strategic Plan and development of an implementation plan and timeline

Eswatini: Lab Network – Capacity by Test Type

Test Type	Count of Test Locations/Equ ip	Annual Cap*	Equipment
			FACS
CD4 -			Calibur/Count/Pres
Conventional	21	790,800	to
CD4 - POC	79	303,360	PIMA
EID -			
Conventional	1	36,960	CAPCTM96 EID
EID - POC	19 <mark>_</mark>	27,360	AlereQ
TB - Xpert	28	155,520	GeneXpert 4/8/16
Viral Load -			Biocentric,
Conventional	4	275,760	CAPCTM96 VL

*Assuming 12*20 = 240 testing days/yr

NOTE: GX Implementation Report suggests 180 testing days/yr

Eswatini: Viral Load Baseline Network

Eswatini: HPV/HIV integration

Assumptions:

NATIONAL TB HOSPITAL

NHLANGANO HEALTH CENTRE

LUBOMBO REFERRAL HOSPITAL

- Capacity based on 8 hr work day;
- 80% capacity availability at TB and Lumombo

NATIONAL MOLECULAR REFERENCE LABORATORY 50% CAPCTM96 + 0.9 Panther

TOTALS

71%

51%

77%

Lubombo **Referral Hospital**

Biggend

Ingwayuma

KEY TAKEAWAYS

Test Site

Utilizing existing capacity at NMRL and redistributing instruments can relieve capacity issues at some sites

Equipment

44,640

70,560

237.024

41.847

48,006

242.325

94%

68%

102%

31,660

36,320

183,336

CAPCTM96 VL

CAPCTM96 VL

2x CAPCTM96 VL

- National TB Hospital requires additional support
- Hologic Panther capacity needed to meet FY19 Targets

Eswatini: EID and TB Networks

Sites Color

Test Sites

Color

EID - Conventional

GeneXpert Capacity

KEY TAKEAWAYS

- Centralized EID with 100% Coverage; TAT = 2 weeks
- Introduction of birth testing and focus on efficiencies
- Overlap of Genexpert footprint with HIV program sites = 100%

Eswatini: GeneXpert Capacity Assumptions

Annual Test units	eSwatini	NHLANGANO HEALTH CENTRE
Reserved for TB program expansion	77,760	5,760
Current TB Tests	32,114	2,065
EID Need*	11,235	459
VL for Pregnant Women	11,235	459
VL for HIV/TB Patients	22,479	1,445
Available for Add'l Multiplex Tests	34,411	3,236
TOTALS	155,520	1,332

eSwatini: GeneXpert Capacities

		Annual	TB TESTS		Total	EID	rin	% FID
Site	Modules	Annuar	Aug '17 -	Utilization	Available	Available	EIU Nood#	70 EID
		Сар	July '18		Сар	Сар	Neeu	Need
AHF LAMVELASE	4	2,880	1,131	39%	1,749	309	1,314	24%
BAYLOR C.O.E CLINIC	4	2,880	412	14%	2,468	1,028	268	100%
BHOLI CLINIC	4	2,880	732	25%	2,148	708	0	100%
DVOKOLWAKO HEALTH CENTER	4	2,880	736	26%	2,144	704	355	100%
EMKHUZWENI HEALTH CENTER	8	5,760	1,394	24%	4,366	1,486	272	100%
GOOD SHEPHERD HOSPITAL	8	5,760	1,847	32%	3,913	1,033	1044	99%
HLATHIKHULU GOVERNMENT HOSPITAL	16	11,520	3,168	28%	8,352	2,592	406	100%
LUBOMBO REFERRAL HOSPITAL	16	11,520	708	6%	10,812	5,052	155	100%
LUYENGO CLINIC	4	2,880	372	13%	2,508	1,068	285	100%
MANKAYANE GOVERNMENT HOSPITAL	8	5,760	1,570	27%	4,190	1,310	316	100%
MATSANJENI HEALTH CENTRE	8	5,760	869	15%	4,891	2,011	139	100%
AHF MATSAPHA COMPREHENSIVE HEALTH CARE	16	11,520	2,056	18%	9,464	3,704	627	100%
MATSAPHA CORRECTIONAL CLINIC	4	2,880	204	7%	2,676	1,236	12	100%
MBABANE GOVERNMENT HOSPITAL	16	11,520	3,828	33%	7,692	1,932	613	100%
NATIONAL TB HOSPITAL	16	11,520	1,878	16%	9,642	3,882	1384	100%
NHLANGANO HEALTH CENTRE	16	11,520	2,065	18%	9,455	3,695	459	100%
PHOCWENI MILITARY CLINIC	4	2,880	934	32%	1,946	506	227	100%
PIGGS PEAK GOVERNMENT HOSPITAL	16	11,520	1,470	13%	10,050	4,290	1020	100%
NATIONAL PSYCHIATRIC HOSPITAL	4	2,880	313	11%	2,567	1,127	32	100%
RFM HOSPITAL	4	2,880	2,220	77%	660	(780)	1016	0%
SIGOMBENI RED CROSS CLINIC	4	2,880	244	8%	2,636	1,196	100	100%
RSSC MHLUME	4	2,880	404	14%	2,476	1,036	102	100%
RSSC SIMUNYE	4	2,880	649	23%	2,231	791	76	100%
SIPHOFANENI CLINIC	4	2,880	624	22%	2,256	816	777	100%
SITHOBELA RURAL HEALTH CENTRE	4	2,880	292	10%	2,588	1,148	229	100%
N			1		,524	1,644	6	100%

GeneXpert Current Locations

Ingwavum

2,011

KEY TAKEAWAYS

- EID volumes are small in comparison to remaining capacity
- Placing new instruments at sites with high TB volumes
- A pilot for feasibility is recommended at high functioning and lower functioning sites: HR requirements are critical consideration
- Layering additional tests (e.g.VL for Pregnant women;VL for HIV/TB co-inf)

100% 100%

Country Examples: Nigeria

Nigeria: Optimizing referral linkages with existing instruments

- Not all clinic volumes assigned to the nearest lab due to capacity constraints
- 19 of 27 labs would be at full capacity
- Some clinics sending to multiple labs due to full lab capacities

Instruments placement and capacity are not aligned with the geographic distribution of patients

Volume

Nigeria: Selection of II PEPFAR Sites from Existing (GF and FGoN Locked)

- Leaving FGoN and GF Sites in place
- Removing Planned
 Discontinuation sites
- Selecting best I I locations from remaining existing lab locations
- No capacity constraints (currently not enough capacity within the 16 sites)

Nigeria: Updated Instrument Capacity

- Updated the capacity to expected volumes
 - Adding high-throughput machines in 6 locations
- Changes to the "optimal" referral assignments
 - Most significant changes to Benue
 - Tests get re-routed to Abuja area when realistic future capacities are included
- Average Distance and Ranges stay the same

Nigeria: TB Expert Site Coverage (over HIV site footprint)

Key

- Green: within 50 kms
- Yellow: Between 50 and 200 kms
- Red: Beyond 200 km

KEY TAKEAWAYS

- TB and HIV sample collection sites overlapped by over 85%
- Heavy concentration of Genexpert instruments in urban areas with low utilization

Nigeria: Integrated PCR and TB Sample Referral Network

Nigeria Laboratory Optimization

Network Efficiencies Gained:

- Reduction in footprint from 27 to 16 labs
 - II PEPFAR-supported sites
- Cost reduction due to optimized network footprint and integrated SR estimated at 40%
- Testing volumes increased by 1,001%
- 7-fold increase in specimens (sputum, DBS,VL, CD4) transported
- Health facility coverage increased from 1,700 to 2,969 (+75%)
- Sample rejection rates were reduced from 36% to 8%

Publication: Faruna, T., Akintunde, E. Odelola, B., Leveraging private sector transportation/logistics services to improve the National Integrated Specimen Referral Network in Nigeria, Business Management Dynamics, Vol 8, No.7, Jan 2019, pp.08-20

Country Examples:

Lesotho: HIVVL, EID, and TB Instruments

Data Source: Lesotho_LabEQIP Template (VL) & GeneXpert Directory – 2019 (MOH) & URC Comments

Viral Load Utilization

Facility Name	Machine(s)	Annual Site Testing Capacity	FY2020 Baseline Utilization	FY2020 Finalized Current State 70% Coverage	FY2020 Finalized Targets Achieved
B1011: Botha-Bothe HOSP	Roche CAP/CTM 96 (1)	34,560	116%	86%	95%
	Roche C4800 (1)	44,640	39,925	29,687	42,410
C1011: Motebang HOSP	Roche C4800 (1)	46,080	135%	109%	93%
	Hologic Panther (1)	76,800	62,354	50,040	71,485
D1011: Berea HOSP	Roche C4800 (1)	46.090	94%	66%	94%
		46,080	43,444	30,282	43,260
NRL	Roche CAP/CTM 96 (1)	156,000	100%	CEN/	970/
	Roche C4800 (1)		100%	03%	0170
	Roche C4800 (1)	166,080	100.007	400.000	143,761
	Hologic Panther (1)		108,227	100,633	
A4021: Bots-abelo Leprosy HOSP (PIH)		00.100	41%	63%	90%
	ROCHE CAP/ CTW 48 (1)	20,160	8,282	12,722	18,174
E1011: Mafeteng HOSP	Roche CAP/CTM 96 (1)	34,560	306%	83%	92%
	Roche C4800 (1)	44,640	105,641	28,824	41,177
F1011: Nts'ekhe HOSP	Hologic Panther (1)	70.000		62%	88%
		76,800		47,324	67,606
		414,240 475,200	427,873	299,511	427,873

Lesotho: FY2020 Optimized Integrated Sample Transport Network

Multiplexing Opportunities

- 70% of the GeneXpert capacity dedicated for TB Testing
- Reviewed TB & EID combined capacities to assess VL opportunity
- BFPW prioritized
- 19 potential mulitplexed sites

For additional information, please contact **Jason Williams** (jwilliams@usaid.gov) and/or **Dianna Edgil** (dedgil@usaid.gov) for additional information

Thank you

PEPFAR

PEPFAR's Approach for Diagnostic Network Optimization

September 12, 2019

Understanding Diagnostic Networks

Diagnostic Network Challenges

- Areas of focus: Instrument placement, sample transport, patient access to appropriate testing services to derive a complete diagnostic network approach
- Challenges
 - Resource limitations for continued expansion of testing services
 - Fragmented and parallel sample transport networks
 - Suboptimal instrument placement and utilization
 - Insufficient patient access to appropriate testing services
 - Limited visibility into complete diagnostic capabilities
 - Diverse strategies and implementation approaches across donors, implementing partners and laboratory stakeholders

Benefits and Efficiency Gains

- Increased testing coverage, reduced testing turnaround times and improved patient care
- Elimination of duplicative referral lanes (HIV CD4/VL/ IVT, HPV, HCV and TB GeneXpert/ Culture/ LPA)

- Leverage overall investment in sample transport

- Ensure standardization reporting and oversight
- Evidence based instrument placement for improved patient access and/ or increased utilization
- Reduced commodity distribution burden and needs
- Reduced instrument maintenance obligations
- Forward looking strategy to increase negotiation leverage with manufacturers and vendors

What is Network Optimization?

Areas of focus: Instrument placement, integrated sample transport, improved patient access to appropriate testing services to derive a complete diagnostic network approach

Optimization

• The action of making the best or most effective use of a situation or resources

Network Optimization and Modeling

- Use of data in decision-making tools
- Explore various what-if scenarios
- "Virtual Piloting"
- Not a one-time action or the final answer

PEPFAR's Short Term Task Team: A Two-Step Approach to Network Optimization

Step |

- Ensure complete national stakeholder **buy-in and political will**
- Work with country teams to collect data from MOH and PEPFAR (Datim) data sources to complete a modified LabEQIP template
- Data to include existing testing sites, instruments, testing volumes, sample collection sites, programmatic patient demands by site, existing referral area, and turnaround times.
- Desktop-assessment of the existing HIV diagnostic network to calculate testing site capacity versus testing need and turnaround times.
 - Identification of geographically-localized gaps for rapid corrective action
 - Prioritization of countries with insufficient or excess (>150%) HIV molecular testing capacity and/ or VL/ IVT turnaround times that exceed targets for expanded (Step 2) optimization exercises

→ Repeat Step I routinely for continuous quality improvement

PEPFAR's Short Term Task Team: A Two-Step Approach to Network Optimization

Step 2

- Clearly **define the country goal** priorities for expanded optimization
- Collect additional data for geospatial analysis and modeling assumptions
- Import data into a **GIS visualization** tool
- Present outputs to refine assumptions, establish data gaps and further refine expectations for the optimization
- Establish a **stakeholder workshop** present initial models
- Complete full data review with stakeholders testing sites, instruments, testing volumes, sample collection sites, programmatic patient demands by site, existing referral linkages and further refine models
- Develop a prioritized, time-bound **implementation** plan

Challenges to Network Optimization

- Demand is high! High LOE
- Quality of exercises depends on high quality data
 - Testing site, clinical site and linkage data requirements
- Clearly defining the core questions of optimization
 - Disease Integration: Efficiency that considers centralized and decentralized strategies to improve patient access to testing
- Political boundaries versus proximity-driven placement
- Sample referral optimization vs. molecular network optimization (right sizing vs. expansion)
- Investment in sample referral networks
- Ensuring political will and coordination with implementation
- Lab infrastructure and capacity

Thank You